
11. Further Issues in Using OLS with TS Data
 With TS, including lags of the dependent variable often allow

us to fit much better the variation in y

 Exact distribution theory is rarely available in TS
applications, because we often have yt−1 as one of the
regressors and so violate Eut|X  0.

 LST can be used to show consistency and asymptotic
normality as long as Ext

′ut  0

 However, LLN and CLTs for TS are more complex than
those for i.i.d. samples.

 We need to formalize some notions of dependence for TS.



Definition: xt is (strictly) stationary if the joint distribution
of xt1 ,xt2 ,,xtm is the same as that of xt1h,xt2h,,xtmh
for all subsets t1, t2,, tm ∈ T and ∀h ∈ ℤ.
 This says that all finite dimensional distributions of the TS

are invariant to translation.

 Clearly, i.i.d. sequences are stationary

 Stationarity imposes no restrictions on dependence, e.g.

xt   0,0,0, w.p. 1/2
1,1,1, w.p. 1/2

Definition: xt is nonstationary if it is NOT stationary
 Clearly, lots of ways to be nonstationary, eg trending data, or

distributions that vary over time



Definition: xt is covariance (aka weakly or second-order)
stationary if

(i) Ext
2  0  

(ii) Ext   (a constant)
(iii) ∀t,h Extxth  h (doesn’t depend on t)

Rk:
Covariance stationary is NOT a special case of strictly
stationary (strictly stationary processes need not have any
moments–e.g. a sequence of i.i.d. Pareto r.v’s)



There are many notions of weak dependence for TS that
allow us to derive LLNs and CLTs. Most require some
serious probability theory just to state them.

a. A simple notion is asymptotically uncorrelated, i.e.
corrxt,xth → 0 as h ↑ . Although easy to describe,
this isn’t useful for nonlinear functions.

b. A TS is m-dependent if xt and xth are independent
for |h|  m. Easy to describe and a good model for
thinking about TS.

c. Other notions include ergodic, - (or - mixing,
martingales, mixingales



 We can construct LLN and CLTs for each of these notions.
For example: If xt is stationary and ergodic, and
E|x1|  , then

plim 1
n ∑

1

n

xt  Ex1

Examples of weakly dependent processes
(0) White noise: et where Eet  0 and Eeset  e

2st

 Eet  0
 Vet  e

2  
 coves,et  0 s ≠ t

White noise is the building block for a rich collection of
processes. If et is an i.i.d. sequence, we’ll call it i.i.d.
white noise. Q: Why "white noise"?



(1) MA(1) process: xt  et  1et−1 et is white noise

 Ext  Eet  1Eet−1  0
 Vxt  e

2  1
2e

2

 covxt,xt−1  1e
2

 covxt,xt−h  0 |h|  1

Rks:
 MA stands for moving average
 If et is i.i.d. white noise, then xt is m-dependent
 Using the lag operator, we can write

xt  Let L  1  1L



(2) MA (q) process: xt  Let L  1  1L   qLq

 So xt is a weighted moving average of current and up to q
lags of the white noise sequence

xt  et  1et−1   qet−q

 Every MA (q) process is covariance stationary
 More generally, linear combinations of (covariance)

stationary processes are (covariance) stationary
 (Almost) every covariance stationary process is an MA()

process (the exceptions are series with linearly deterministic
components, i.e. series that have contributions that are
random across different realizations but perfectly predictable
from a given sample path)



(3) AR(1) process: xt  1xt−1  et

 To show that it is stationary, write it as an MA() process.
 Using the lag operator

Lxt  et L  1 − 1L
 Does it make any sense to write

xt  1
L et ?

 Consider
1

1 − 1L
 1  1L  1

2L2 

The RHS looks like it might make sense if |1| 1. We can
formalize this intuition (because ℒ2space is complete)

 AR(1) process is (covariance) stationary iff |1| 1



(4) AR(p) process: Lxt  et L  1 − 1L − − pLp

 A weighted average of current and p lags of xt is white noise
xt  1xt−1   pxt−p  et

 To see if is stationary, factor the autoregressive polynomial

L  
i1

p

1 − iL

where (in general) i is complex-valued.
 if |i| 1 ∀i we can invert L factor by factor
 If z ∈ ℂ, |z| is its modulus, i.e. sqrtRe2z  Im2z
 If 1 − izi  0, zi is called a root of the polynomial z
 |i| 1  |zi| 1, so we say "xt is covariance stationary iff

roots of z lie strictly outside the unit circle"



(5) ARMA(p,q) process: Lxt  Let

 Here p refers to the order of the autoregressive polynomial
and q to the order of the moving average polynomial:

L  1 − 1L − − pLp

L  1  1L   qLq

 xt is covariance stationary iff roots of z lie strictly outside
the unit circle

 Note that if roots of z lie strictly outside the unit circle,
called the invertibility condition, then we can also write an
MA(q) process as an AR() process



LS Properties of OLS with TS data ("GM" Assumptions)

 TS.1 ′: yt,xt is stationary and weakly dependent (so that
LLN and CLTs apply to sample averages), and

yt  xt  ut

 TS.2 ′: X has full column rank (w.p.1). Moreover, the
eigenvalues of X ′X/n are bounded below at a value that is
strictly above zero

 Under TS.1 ′-TS.2 ′, we can write (w.p.1)

    1

n ∑ xt
′xt

−1 1
n ∑ xt

′ut



 TS.3 ′: Ext
′ut  0

 A stronger assumption is Eut|xt  0. We don’t need it
to show that


 converges to , but in practice we would

add nonlinear terms to the regression function to try to
get the BLP and conditional mean as close as possible.

 By TS.1 ′,
plim 1

n ∑ xt
′ut  0

 By TS.2 ′, either plim 1
n ∑ xt

′xt is a pos. def. matrix or its
eigenvalues stay strictly positive, so the eigenvalues of its
inverse stay strictly bounded from above.∴

plim 1
n ∑ xt

′xt
−1 1

n ∑ xt
′ut  0

and

 is a consistent estimator of .



 Define the matrix Vn  V∑ xt
′ut/n. We can write

n Vn
−1/2 1

n ∑ xt
′ut  n Vn

−1/2 1
n ∑ xt

′xt 

 − 

 Recall the CLT says, in the scalar case,

Yn − EYn

VarYn
~aN0,1

 Applying the vector analog we have
n Vn

−1/2 1
n ∑ xt

′ut  n Vn
−1/2 1

n ∑ xt
′xt 


 − ~aN0, IK

so, using my abuse of notation

~aN  ,n−1 1

n ∑ xt
′xt

−1
Vn

1
n ∑ xt

′xt
−1



Notice that

n−1 1
n ∑ xt

′xt
−1

Vn
1
n ∑ xt

′xt
−1
 n ∑ xt

′xt
−1Vn ∑ xt

′xt
−1

So what does Vn look like? Because it has zero mean,

V ∑
t1

T
xt
′ut  E ∑

t1

T
xt
′ut ∑

s1

T
xs
′us

′

 E ∑
t1

T
∑
s1

T
utusxt

′xs

 E ∑
t1

T
ut

2xt
′xt  2E ∑

t1

T
∑
st

T
utusxt

′xs



The simplest case mimics the CLM
 TS.4 ′: varut|xt  2

 TS.5 ′: Eutus|xt,xs  0

 Under TS.1 ′-TS.5 ′:

Vn  2
n E ∑

t1

T
xt
′xt

and

plim 1
n ∑ xt

′xt
−1

Vn  2

∴

~aN  ,2 ∑ xt

′xt
−1



Illustrative examples
1. AR(1) model for y

yt  0  1xt  ut

where xt  yt−1 and ut is an i.i.d. white noise sequence

 We can have Eut|xt  0 (or even the stronger property
Eut|xt,xt−1,  0, but it makes no sense to assume
Eut|xt1,xt,xt−1,  0 as ut  xt1 − 0 − 1xt!

 As long as |1| 1, we can write yt as an MA() process, so
yt,xt is weakly dependent. Therefore the OLS estimator
will be consistent and asymptotically normal.

 If 1  1 (random walk with drift), then OLS estimator will
be consistent, but not asymptotically normal. This suggests
that the small sample distribution will be poorly
approximated by usual LST if 1 is close to 1



2. Efficient Market Hypothesis (EMH)
Suppose we believe returns are unpredictable from their
own past history. We can formalize this as saying

Eyt|yt−1,yt−2,  Eyt

 A strategy would be to build a model
yt  0  xt1  ut

where xt  yt−1,yt−2,,yt−p
 Under EMH, this AR(p) model has all its roots outside the

unit circle (they are at infinity), so if ut is i.i.d., then
yt,xt is weakly dependent.

 OLS estimator

1 will be consistent and asymptotically

normal. We can use LST to test H0 : 1  0



3. Expectations Augmented Phillips Curve
PC( ∗ ):  t −  t

e  1ut − ut
n  et

where
 t  inflation
 t

e  expected inflation
ut  unemployment rate (not the disturbance!)
ut

n  natural unemployment rate
et  disturbance

Suppose we don’t see  t
e,ut

n



 Strategy 1: Assume
 t

e   t−1 (static expectations)
ut

n   (a constant)

Then PC(∗) becomes
PC( ∗ ∗) Δ t  0  1ut  et Δ  1 − L

Rk: Suppose et is an AR(1) process, so Let   t and  t
is white noice. Multiply both sides of PC(∗ ∗) by L to get

Δ t 

0 


1ut 


2Δ t−1 


3ut−1   t

so dependence in the errors looks like dynamics in the PRF.



 Strategy 2: Assume
 t

e   t−1  1Δ t−1  2Δ t−2

ut
n  1ut  2ut−1  3ut−3

Then PC(∗) becomes
PC( ∗ ∗ ∗) Δ t  0  1ut  2ut−1  3ut−3

 4Δ t−1  5Δ t−2  et

Rk: Notice that using a proxy for unobserved expectations or
for a smoothed series (natural unemployment, permanent
income, etc.) often introduces dynamics (lags) into the PRF

 We can extend the LST for weakly dependent processes to
include seasonals and time trends as regressors. But highly
persistent series lead to a very different theory.



Highly persistent series
Consider the model

∗ yt  yt−1  et

 If ∀t
 (i) E|yt|  
 (ii) Eet|yt−1,yt−2,

Then yt is called a martingale (w.r.t. yt−1,yt−2,) and
et is called a martingale difference sequence. There is no
requirement that et be i.i.d.

 If we have et i.i.d. white noise, then yt is called a
random walk

 Recursive substitution in (∗) gives
yt  y0  et  et−1 e1



Therefore
∀t Eyt  Ey0 but varyt  e

2t
so the random walk model is not (covariance) stationary. In
fact it’s variance "blows up".

 For a stationary AR(1) model, we have
Eyth|yt  1

hyt

which goes to zero as the horizon increases. But for the
random walk (or martingale) model, the dependence never
goes away. If we set y0  Ey0, we can show that

corryt,yth  t
t  h

so for large t the correlation among observations of any fixed
distance can be arbitrarily large (we don’t get weak
dependence)



 Many economic data display what looks like "unit root
behaviour" (aka look I(1)) because the have a root in their
AR representation that looks like it is on the unit circle. For
such models, we can generalize eq (∗) to allow et to be a
weakly dependent (I(0) which includes ARMA(p,q))
process). Examples include the exchange rate, interest rate,
inflation.

 Some highly persistent processes display "trends", eg
yt  0  yt−1  et

which is called a random walk with drift. Using recursive
substitution, we see that we can write this as

yt  0t  y0  et  et−1 e1



Transformations on I(1) processes

 By definition, yt is I(1) iff Δyt is I(0) (i.e. weakly dependent).
We can define an entire hierarchy I(2), I(3), etc.

 Therefore, if yt looks I(1), we can use its first difference to
get a series that is weakly dependent. For example, suppose

yt  0  1yt−1  2yt−2  xt  et

and we suspect a unit root in L (i.e. 1 − 1 − 2  0.
Then we could impose a unit root and rewrite the model as

Δyt  0  1Δyt−1  xt  et

where Δyt is now a weakly dependent process.

 If xt is also I(1), there is the possibility that ∃ such that
yt − xt is stationary. If so,  is called a cointegrating vector
and differencing would be wrong. See 18.4.



Deciding whether a series is I(1)

 Formal tests are in Ch 18.

 Even if process is stationary, standard LST provides a poor
approximation to the sampling distribution in finites samples
if roots are close to the unit circle.

 Run the regression
yt  0  1yt−1   pyt−p  et

 To see if is stationary, and factor the AR polynomial
L  

i1

p

1 −

 iL. If max |


 i|. 9 then decide I(1).

 If data display a trend, include t in the regression (to allow
for trend stationarity); otherwise max |i| is biased upwards.



Dynamically Complete Models

 Consider the model
yt  0  1zt  ut

where yt, zt are time series.

 As long as Eut|zt  0 (or even just Ezt
′ut), OLS will

usually be a consistent estimator (whether the data display
weak dependence or are highly persistent). But the
disturbances will be serially correlated.

 What we would like is the property
DC Eut|zt,ut−1, zt−1,  Eut|zt,yt−1, zt−1,  0

 Q: How to get this?
 A: Add lags of yt, zt to the regression!



 This leads to an augmented model
yt  0  1zt  2yt−1  3zt−1  ut

 If we add enough lags (and nonlinear terms) we can
guarantee that the model is dynamically complete, i.e.
satisfies DC

 A dynamically complete model also guarantees
TS.5 ′ Eusut|xs,xt  0 ∀s ≠ t

 NOTE: Including only lags but not nonlinear terms won’t get
you TS.5 ′, but will guarantee Eusut  0


