
11. Further Issues in Using OLS with TS Data
 With TS, including lags of the dependent variable often allow

us to fit much better the variation in y

 Exact distribution theory is rarely available in TS
applications, because we often have yt−1 as one of the
regressors and so violate Eut|X  0.

 LST can be used to show consistency and asymptotic
normality as long as Ext

′ut  0

 However, LLN and CLTs for TS are more complex than
those for i.i.d. samples.

 We need to formalize some notions of dependence for TS.



Definition: xt is (strictly) stationary if the joint distribution
of xt1 ,xt2 ,,xtm is the same as that of xt1h,xt2h,,xtmh
for all subsets t1, t2,, tm ∈ T and ∀h ∈ ℤ.
 This says that all finite dimensional distributions of the TS

are invariant to translation.

 Clearly, i.i.d. sequences are stationary

 Stationarity imposes no restrictions on dependence, e.g.

xt   0,0,0, w.p. 1/2
1,1,1, w.p. 1/2

Definition: xt is nonstationary if it is NOT stationary
 Clearly, lots of ways to be nonstationary, eg trending data, or

distributions that vary over time



Definition: xt is covariance (aka weakly or second-order)
stationary if

(i) Ext
2  0  

(ii) Ext   (a constant)
(iii) ∀t,h Extxth  h (doesn’t depend on t)

Rk:
Covariance stationary is NOT a special case of strictly
stationary (strictly stationary processes need not have any
moments–e.g. a sequence of i.i.d. Pareto r.v’s)



There are many notions of weak dependence for TS that
allow us to derive LLNs and CLTs. Most require some
serious probability theory just to state them.

a. A simple notion is asymptotically uncorrelated, i.e.
corrxt,xth → 0 as h ↑ . Although easy to describe,
this isn’t useful for nonlinear functions.

b. A TS is m-dependent if xt and xth are independent
for |h|  m. Easy to describe and a good model for
thinking about TS.

c. Other notions include ergodic, - (or - mixing,
martingales, mixingales



 We can construct LLN and CLTs for each of these notions.
For example: If xt is stationary and ergodic, and
E|x1|  , then

plim 1
n ∑

1

n

xt  Ex1

Examples of weakly dependent processes
(0) White noise: et where Eet  0 and Eeset  e

2st

 Eet  0
 Vet  e

2  
 coves,et  0 s ≠ t

White noise is the building block for a rich collection of
processes. If et is an i.i.d. sequence, we’ll call it i.i.d.
white noise. Q: Why "white noise"?



(1) MA(1) process: xt  et  1et−1 et is white noise

 Ext  Eet  1Eet−1  0
 Vxt  e

2  1
2e

2

 covxt,xt−1  1e
2

 covxt,xt−h  0 |h|  1

Rks:
 MA stands for moving average
 If et is i.i.d. white noise, then xt is m-dependent
 Using the lag operator, we can write

xt  Let L  1  1L



(2) MA (q) process: xt  Let L  1  1L   qLq

 So xt is a weighted moving average of current and up to q
lags of the white noise sequence

xt  et  1et−1   qet−q

 Every MA (q) process is covariance stationary
 More generally, linear combinations of (covariance)

stationary processes are (covariance) stationary
 (Almost) every covariance stationary process is an MA()

process (the exceptions are series with linearly deterministic
components, i.e. series that have contributions that are
random across different realizations but perfectly predictable
from a given sample path)



(3) AR(1) process: xt  1xt−1  et

 To show that it is stationary, write it as an MA() process.
 Using the lag operator

Lxt  et L  1 − 1L
 Does it make any sense to write

xt  1
L et ?

 Consider
1

1 − 1L
 1  1L  1

2L2 

The RHS looks like it might make sense if |1| 1. We can
formalize this intuition (because ℒ2space is complete)

 AR(1) process is (covariance) stationary iff |1| 1



(4) AR(p) process: Lxt  et L  1 − 1L − − pLp

 A weighted average of current and p lags of xt is white noise
xt  1xt−1   pxt−p  et

 To see if is stationary, factor the autoregressive polynomial

L  
i1

p

1 − iL

where (in general) i is complex-valued.
 if |i| 1 ∀i we can invert L factor by factor
 If z ∈ ℂ, |z| is its modulus, i.e. sqrtRe2z  Im2z
 If 1 − izi  0, zi is called a root of the polynomial z
 |i| 1  |zi| 1, so we say "xt is covariance stationary iff

roots of z lie strictly outside the unit circle"



(5) ARMA(p,q) process: Lxt  Let

 Here p refers to the order of the autoregressive polynomial
and q to the order of the moving average polynomial:

L  1 − 1L − − pLp

L  1  1L   qLq

 xt is covariance stationary iff roots of z lie strictly outside
the unit circle

 Note that if roots of z lie strictly outside the unit circle,
called the invertibility condition, then we can also write an
MA(q) process as an AR() process



LS Properties of OLS with TS data ("GM" Assumptions)

 TS.1 ′: yt,xt is stationary and weakly dependent (so that
LLN and CLTs apply to sample averages), and

yt  xt  ut

 TS.2 ′: X has full column rank (w.p.1). Moreover, the
eigenvalues of X ′X/n are bounded below at a value that is
strictly above zero

 Under TS.1 ′-TS.2 ′, we can write (w.p.1)

    1

n ∑ xt
′xt

−1 1
n ∑ xt

′ut



 TS.3 ′: Ext
′ut  0

 A stronger assumption is Eut|xt  0. We don’t need it
to show that


 converges to , but in practice we would

add nonlinear terms to the regression function to try to
get the BLP and conditional mean as close as possible.

 By TS.1 ′,
plim 1

n ∑ xt
′ut  0

 By TS.2 ′, either plim 1
n ∑ xt

′xt is a pos. def. matrix or its
eigenvalues stay strictly positive, so the eigenvalues of its
inverse stay strictly bounded from above.∴

plim 1
n ∑ xt

′xt
−1 1

n ∑ xt
′ut  0

and

 is a consistent estimator of .



 Define the matrix Vn  V∑ xt
′ut/n. We can write

n Vn
−1/2 1

n ∑ xt
′ut  n Vn

−1/2 1
n ∑ xt

′xt 

 − 

 Recall the CLT says, in the scalar case,

Yn − EYn

VarYn
~aN0,1

 Applying the vector analog we have
n Vn

−1/2 1
n ∑ xt

′ut  n Vn
−1/2 1

n ∑ xt
′xt 


 − ~aN0, IK

so, using my abuse of notation

~aN  ,n−1 1

n ∑ xt
′xt

−1
Vn

1
n ∑ xt

′xt
−1



Notice that

n−1 1
n ∑ xt

′xt
−1

Vn
1
n ∑ xt

′xt
−1
 n ∑ xt

′xt
−1Vn ∑ xt

′xt
−1

So what does Vn look like? Because it has zero mean,

V ∑
t1

T
xt
′ut  E ∑

t1

T
xt
′ut ∑

s1

T
xs
′us

′

 E ∑
t1

T
∑
s1

T
utusxt

′xs

 E ∑
t1

T
ut

2xt
′xt  2E ∑

t1

T
∑
st

T
utusxt

′xs



The simplest case mimics the CLM
 TS.4 ′: varut|xt  2

 TS.5 ′: Eutus|xt,xs  0

 Under TS.1 ′-TS.5 ′:

Vn  2
n E ∑

t1

T
xt
′xt

and

plim 1
n ∑ xt

′xt
−1

Vn  2

∴

~aN  ,2 ∑ xt

′xt
−1



Illustrative examples
1. AR(1) model for y

yt  0  1xt  ut

where xt  yt−1 and ut is an i.i.d. white noise sequence

 We can have Eut|xt  0 (or even the stronger property
Eut|xt,xt−1,  0, but it makes no sense to assume
Eut|xt1,xt,xt−1,  0 as ut  xt1 − 0 − 1xt!

 As long as |1| 1, we can write yt as an MA() process, so
yt,xt is weakly dependent. Therefore the OLS estimator
will be consistent and asymptotically normal.

 If 1  1 (random walk with drift), then OLS estimator will
be consistent, but not asymptotically normal. This suggests
that the small sample distribution will be poorly
approximated by usual LST if 1 is close to 1



2. Efficient Market Hypothesis (EMH)
Suppose we believe returns are unpredictable from their
own past history. We can formalize this as saying

Eyt|yt−1,yt−2,  Eyt

 A strategy would be to build a model
yt  0  xt1  ut

where xt  yt−1,yt−2,,yt−p
 Under EMH, this AR(p) model has all its roots outside the

unit circle (they are at infinity), so if ut is i.i.d., then
yt,xt is weakly dependent.

 OLS estimator

1 will be consistent and asymptotically

normal. We can use LST to test H0 : 1  0



3. Expectations Augmented Phillips Curve
PC( ∗ ):  t −  t

e  1ut − ut
n  et

where
 t  inflation
 t

e  expected inflation
ut  unemployment rate (not the disturbance!)
ut

n  natural unemployment rate
et  disturbance

Suppose we don’t see  t
e,ut

n



 Strategy 1: Assume
 t

e   t−1 (static expectations)
ut

n   (a constant)

Then PC(∗) becomes
PC( ∗ ∗) Δ t  0  1ut  et Δ  1 − L

Rk: Suppose et is an AR(1) process, so Let   t and  t
is white noice. Multiply both sides of PC(∗ ∗) by L to get

Δ t 

0 


1ut 


2Δ t−1 


3ut−1   t

so dependence in the errors looks like dynamics in the PRF.



 Strategy 2: Assume
 t

e   t−1  1Δ t−1  2Δ t−2

ut
n  1ut  2ut−1  3ut−3

Then PC(∗) becomes
PC( ∗ ∗ ∗) Δ t  0  1ut  2ut−1  3ut−3

 4Δ t−1  5Δ t−2  et

Rk: Notice that using a proxy for unobserved expectations or
for a smoothed series (natural unemployment, permanent
income, etc.) often introduces dynamics (lags) into the PRF

 We can extend the LST for weakly dependent processes to
include seasonals and time trends as regressors. But highly
persistent series lead to a very different theory.



Highly persistent series
Consider the model

∗ yt  yt−1  et

 If ∀t
 (i) E|yt|  
 (ii) Eet|yt−1,yt−2,

Then yt is called a martingale (w.r.t. yt−1,yt−2,) and
et is called a martingale difference sequence. There is no
requirement that et be i.i.d.

 If we have et i.i.d. white noise, then yt is called a
random walk

 Recursive substitution in (∗) gives
yt  y0  et  et−1 e1



Therefore
∀t Eyt  Ey0 but varyt  e

2t
so the random walk model is not (covariance) stationary. In
fact it’s variance "blows up".

 For a stationary AR(1) model, we have
Eyth|yt  1

hyt

which goes to zero as the horizon increases. But for the
random walk (or martingale) model, the dependence never
goes away. If we set y0  Ey0, we can show that

corryt,yth  t
t  h

so for large t the correlation among observations of any fixed
distance can be arbitrarily large (we don’t get weak
dependence)



 Many economic data display what looks like "unit root
behaviour" (aka look I(1)) because the have a root in their
AR representation that looks like it is on the unit circle. For
such models, we can generalize eq (∗) to allow et to be a
weakly dependent (I(0) which includes ARMA(p,q))
process). Examples include the exchange rate, interest rate,
inflation.

 Some highly persistent processes display "trends", eg
yt  0  yt−1  et

which is called a random walk with drift. Using recursive
substitution, we see that we can write this as

yt  0t  y0  et  et−1 e1



Transformations on I(1) processes

 By definition, yt is I(1) iff Δyt is I(0) (i.e. weakly dependent).
We can define an entire hierarchy I(2), I(3), etc.

 Therefore, if yt looks I(1), we can use its first difference to
get a series that is weakly dependent. For example, suppose

yt  0  1yt−1  2yt−2  xt  et

and we suspect a unit root in L (i.e. 1 − 1 − 2  0.
Then we could impose a unit root and rewrite the model as

Δyt  0  1Δyt−1  xt  et

where Δyt is now a weakly dependent process.

 If xt is also I(1), there is the possibility that ∃ such that
yt − xt is stationary. If so,  is called a cointegrating vector
and differencing would be wrong. See 18.4.



Deciding whether a series is I(1)

 Formal tests are in Ch 18.

 Even if process is stationary, standard LST provides a poor
approximation to the sampling distribution in finites samples
if roots are close to the unit circle.

 Run the regression
yt  0  1yt−1   pyt−p  et

 To see if is stationary, and factor the AR polynomial
L  

i1

p

1 −

 iL. If max |


 i|. 9 then decide I(1).

 If data display a trend, include t in the regression (to allow
for trend stationarity); otherwise max |i| is biased upwards.



Dynamically Complete Models

 Consider the model
yt  0  1zt  ut

where yt, zt are time series.

 As long as Eut|zt  0 (or even just Ezt
′ut), OLS will

usually be a consistent estimator (whether the data display
weak dependence or are highly persistent). But the
disturbances will be serially correlated.

 What we would like is the property
DC Eut|zt,ut−1, zt−1,  Eut|zt,yt−1, zt−1,  0

 Q: How to get this?
 A: Add lags of yt, zt to the regression!



 This leads to an augmented model
yt  0  1zt  2yt−1  3zt−1  ut

 If we add enough lags (and nonlinear terms) we can
guarantee that the model is dynamically complete, i.e.
satisfies DC

 A dynamically complete model also guarantees
TS.5 ′ Eusut|xs,xt  0 ∀s ≠ t

 NOTE: Including only lags but not nonlinear terms won’t get
you TS.5 ′, but will guarantee Eusut  0


